Navigazione
🗘 Torna alla Home degli Insegnamenti
Il corso in breve
Docenti: Lorenzo Fatibene, Joerg Seiler.
CFU: 6
Periodo: 2° semestre
Programma:
‣
Prova orale:
- Tipologia: seminario di circa 60 minuti su argomenti concordati con i docenti.
📚 Biblioteca
Introduction to Smooth Manifolds
Introduction to Smooth Manifolds
Lee, John M.
Springer
2013
Geometria
Elementary introduction to the theory of pseudodifferential operators
Elementary introduction to the theory of pseudodifferential operators
Saint Raymond, Xavier
CRC
1991
Analisi Matematica
Natural and Gauge Natural Formalism for Classical Field Theories : A Geometric Perspective Including Spinors and Gauge Theories
Natural and Gauge Natural Formalism for Classical Field Theories : A Geometric Perspective Including Spinors and Gauge Theories
Fatibene, Lorenzo - Francavaglia, Mauro
Springer
2003
Fisica Matematica
Numerical Relativity : Solving Einstein’s Equations on the Computer
Numerical Relativity : Solving Einstein’s Equations on the Computer
Baumgarte, Thomas W. - Shapiro, Stuart L.
Springer
2010
Fisica MatematicaAnalisi Numerica
The Analysis of Linear Partial Differential Operators I : Distribution Theory and Fourier Analysis
The Analysis of Linear Partial Differential Operators I : Distribution Theory and Fourier Analysis
Hörmander, Lars
Springer
2003
Analisi Matematica
Differentiable Manifolds : Forms, Currents, Harmonic Forms
Differentiable Manifolds : Forms, Currents, Harmonic Forms
de Rham, Georges
Springer
2011
Geometria
Pseudo-Differential Operators
Pseudo-Differential Operators
Kumano-Go, Hitoshi
MIT Press
1982
Analisi Matematica
Relativistic Theories, Gravitational Theories, and General Relativity : A Relativistic Zibaldone
Relativistic Theories, Gravitational Theories, and General Relativity : A Relativistic Zibaldone
Fatibene, Lorenzo
//
Giugno 2024
Fisica Matematica