Navigazione
🗘 Torna alla Home degli Insegnamenti
Il corso in breve
Docenti: Yu Chen, Lea Terracini.
CFU: 9 o 6
Periodo: 1° semestre
Programma:
‣
Prova scritta:
- Tipologia: esercizi assegnati durante le lezioni.
Prova orale:
- Tipologia: domande relative alle teorie presentate nel programma del corso, nonchè gli esercizi svolti durante le lezioni.
📚 Biblioteca
Introduction to Commutative Algebra
Introduction to Commutative Algebra
Atiyah, Michael F. - MacDonald, Ian G.
Addison-Wesley
1969
Algebra
Steps in Commutative Algebra
Steps in Commutative Algebra
Sharp. Rodney Y.
London Mathematical SocietyCambridge University Press
2001
Algebra
Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra
Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra
Cox, David A. - Little, John - O’Shea, Donal
Springer
2015
Algebra
Computational Commutative Algebra 1
Computational Commutative Algebra 1
Kreuzer, Martin - Robbiano, Lorenzo
Springer
2000
Algebra
Computational Commutative Algebra 2
Computational Commutative Algebra 2
Kreuzer, Martin - Robbiano, Lorenzo
Springer
2005
Algebra
Basic Algebra I
Basic Algebra I
Jacobson, Nathan
W.H. Freeman
1985
Algebra
Basic Algebra II
Basic Algebra II
Jacobson, Nathan
W.H. Freeman
1989
Algebra
Algebra
Algebra
Lang, Serge
Springer
2002
Algebra
Groups and Representations
Groups and Representations
Alperin, J. L. - Bell, Rowen B.
Springer
1995
Algebra
Representation Theory : A First Course
Representation Theory : A First Course
Fulton, WIlliam - Harris, Joe
Springer
2004
Algebra
Ring Theory : Student Edition
Ring Theory : Student Edition
Rowen, Louis Halle
Academic Press
1991
Algebra
Elementi di teoria di Galois
Elementi di teoria di Galois
Procesi, Claudio
ZanichelliDecibel
1989
Algebra
Fields and Galois Theory
Fields and Galois Theory
Milne, J.S.
//
2022
Algebra